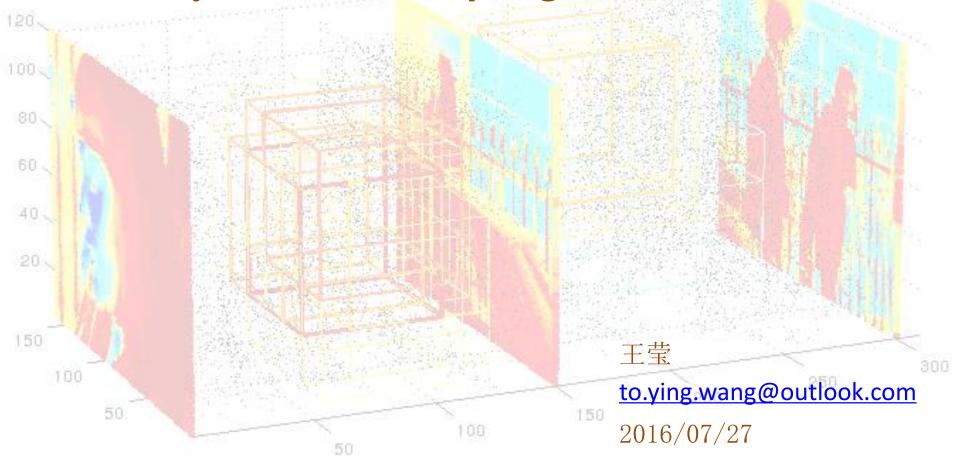
Robotic Vision

What you see ≠ what you get



0. About the Presenter

BOZHON 博众

Dr. Ying Wang Computer Vision Algorithm Engineer

Research Interests: Computer Vision, HRI, Robotics, Automation control

RWTH Aachen University, Germany

IMA ZLW IfU

PhD Candidate in Mechanical Engineering, focusing on Robot Vision

Degree completed in 2016.01 with a mark of "sehr gut"

Topic: A Visual Servoing Approach to Human-robot Interactive Object Transfer

Harbin Institute of Technology, China

Master of Science in Mechatronics Engineering (top 5% of class)

Topic: Study of the DSP based Servo Controller of Die Bonding Machine

Wuhan University of Technology, China

Bachelor of Science in Mechanical Engineering and Automation (top 5%)

Topic: Design of Mechanical Structure of the Oil Tube marking Machine

A Visual Servoing Approach to Human-Robot Interactive Object Transfer

1. Introduction

- 2. Modeling a Robotic Vision Problem
- **3. Solution Proposal**
- 4. Summary

Demands for Robotic Vision

Dr. Ying Wang Jul. 27th 2016

Robots are designed and built to complement human abilities.

Efficiency & Automation

Stacking boxes for shipping

Mobility

Surveillance Introduction

Skills & Accuracy

Medical operation

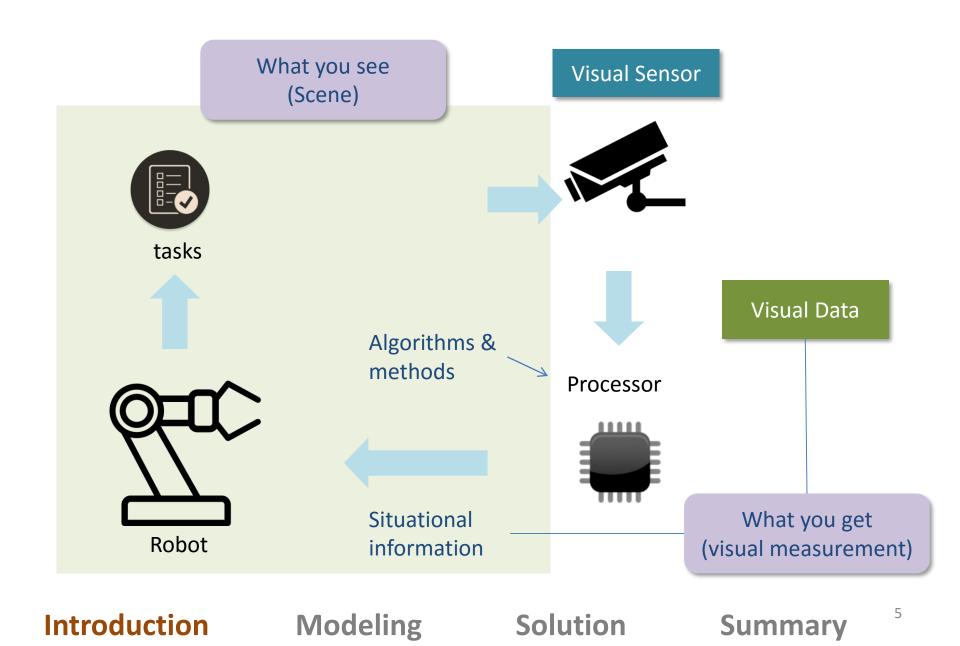
Hazards Tolerance

Reaction

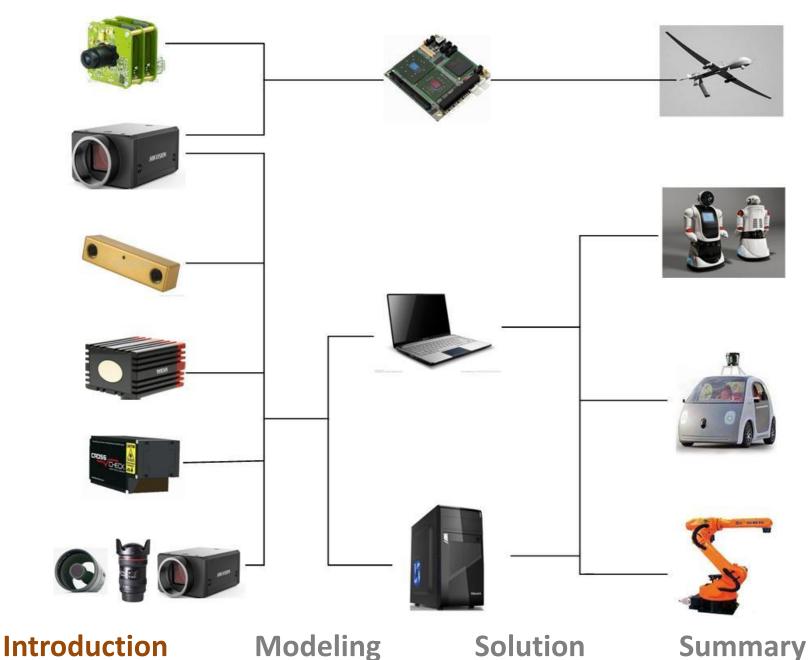
Perception

Spray painting **Solution**

Robotic Vision System

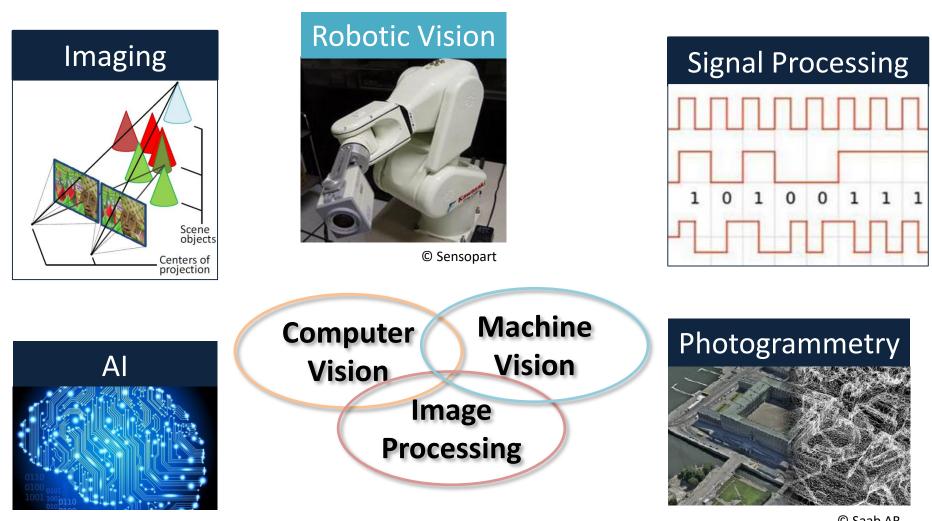


Robotic Vision System



Robotic Vision and Related Topics

Dr. Ying Wang Jul. 27th 2016



© Saab AB

7

Introduction

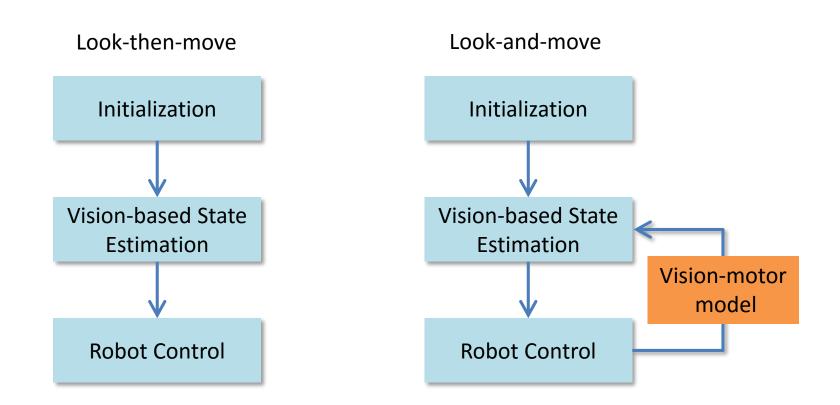
Modeling

Solution

1. Introduction

- 2. Modeling a Robotic Vision Problem
- **3. Solution Proposal**
- 4. Summary

General Approach to Robotic Vision

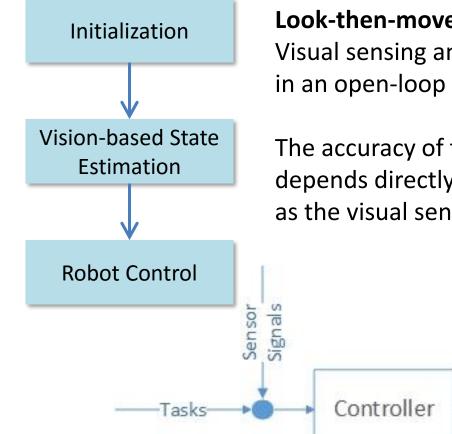


Introduction

Modeling

Solution

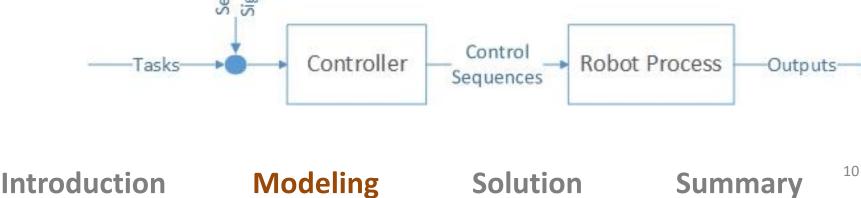
Look-then-move



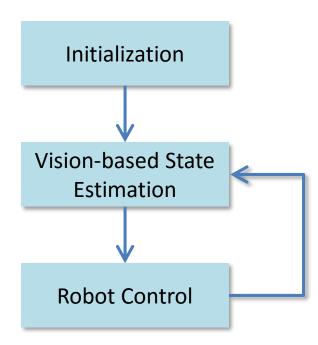
Look-then-move

Visual sensing and manipulation are combined directly in an open-loop fashion.

The accuracy of the operation, in such a configuration, depends directly on the accuracy of the hardware, such as the visual sensors, the manipulator and the controller.



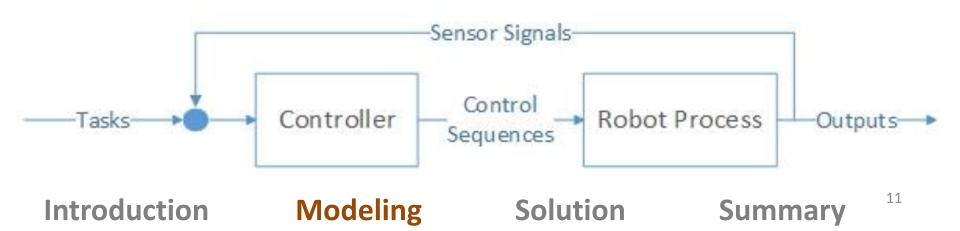
Visual Servoing



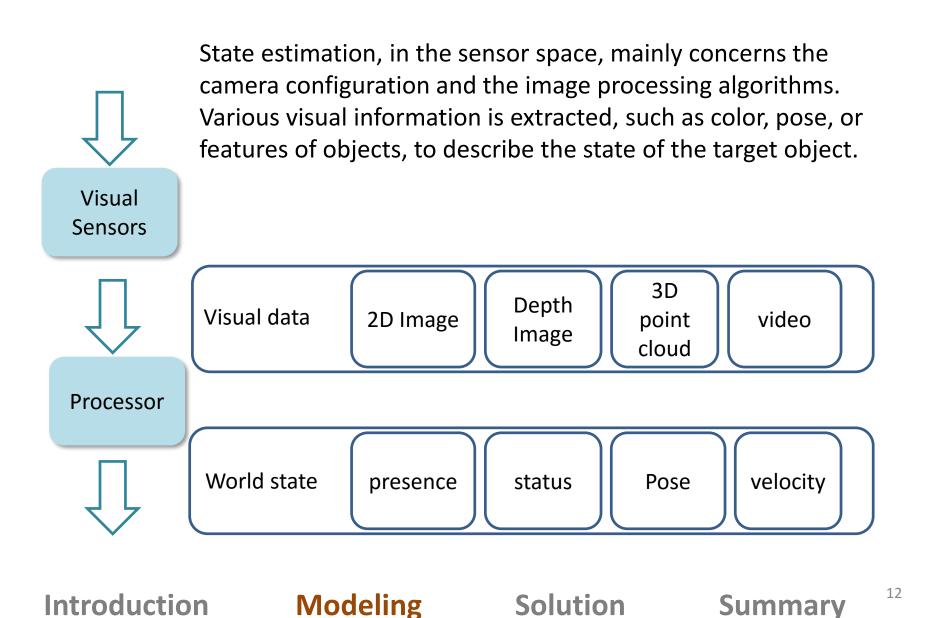
Visual Servoing

uses a visual-feedback control loop to increase the overall accuracy of the system - a principal concern in any application.

Visual servoing approaches broaden the application domain of robotic manipulation, as they do not need *a priori* knowledge of the workspace, that is, they are competent of visual control in an unmodeled environment.



Vision-based State Estimation



Representation

Random variable x denotes a quantity that is uncertain. This information is captured by the probability distribution $P_r(x)$ of the random variable. A random variable may be discrete or continuous.

1 D

0.4 Probability 0.2 ydiscrete 0.0 2 3 4 5 1 6 Face value of biased die \overline{x} 3.0 Probabidlity density 2.0 continuous 1.0 0.0 y x 0 1 Time taken to complete test (hours) Introduction Modeling **Solution**

2 D

Dr. Ying Wang Jul. 27th 2016

13

Summary

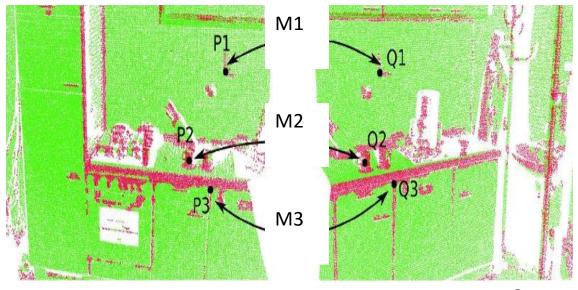
Probability Model

Dr. Ying Wang Jul. 27th 2016

Noise

©pudn

Many-to-one mapping



©PCL

Introduction

Modeling

Solution

Summary

Dr. Ying Wang Jul. 27th 2016

Fitting Probability Models

taking visual data x and use them to infer the state of the world θ fitting probability models to data - learning

Maximum Likelihood

the maximum likelihood (ML) method finds the set of parameters $\hat{\theta}$ under which the data $\{x_i\}_{i=1}^{I}$ are most likely.

$$\hat{\theta} = \max_{\theta} [P_r(x_1 \dots x_I | \theta)] = \max_{\theta} \left| \prod_{i=1}^{I} P_r(x_i | \theta) \right|$$

Maximum a posteriori

maximum a posteriori estimation maximizes the posterior probability $[P_r(x_1 ... x_l | \theta)]$ of the parameters

$$\hat{\theta} = \max_{\theta} [P_r(\theta \mid x_1 \dots x_I)] = \max_{\theta} \left[\frac{P_r(x_1 \dots x_I \mid \theta) P_r(\theta)}{P_r(x_1 \dots x_I)} \right] = \max_{\theta} \left[\frac{\prod_{i=1}^{I} P_r(x_i \mid \theta) P_r(\theta)}{P_r(x_1 \dots x_I)} \right]$$
$$\hat{\theta} = \max_{\theta} \left[\prod_{i=1}^{I} P_r(x_i \mid \theta) P_r(\theta) \right]$$
Introduction Modeling Solution Summary¹⁵

Dr. Ying Wang Jul. 27th 2016

Fitting Probability Models

Bayesian approach

$$P_r(\theta \mid x_1 \dots x_I) = \frac{\prod_{i=1}^{I} P_r(x_i \mid \theta) P_r(\theta)}{P_r(x_1 \dots x_I)}$$

Evaluating the predictive distribution is more difficult for the Bayesian case since we have not estimated a single model but have instead found a probability distribution over possible models. Hence, we calculate

$$P_r(x^* | x_1 \dots x_I) = \int P_r(x^* | \theta) P_r(\theta | x_1 \dots x_I) d\theta$$

General Form

The predictive density calculations for the Bayesian, MAP and ML cases can be unified as

$$P_r(x^*|x_1 \dots x_I) = \int P_r(x^*|\theta) \delta[\theta - \hat{\theta}] d\theta = P_r(x^*|\hat{\theta})$$

Introduction

Modeling

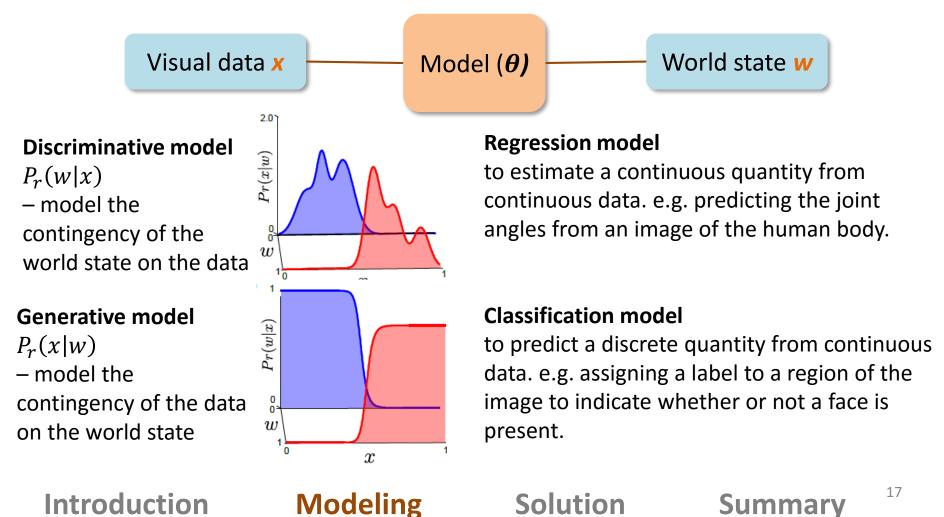
Solution

Summary ¹⁶

Dr. Ying Wang Jul. 27th 2016

Machine Learning Solution

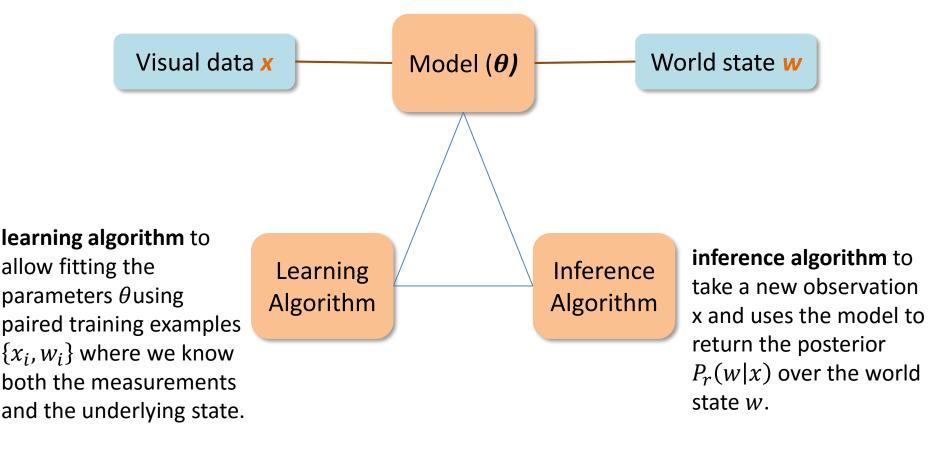
model to mathematically relate the visual data x and the world state w. The model specifies a family of possible relationships between x and w and the particular relationship is determined by the model parameters θ .



Dr. Ying Wang Jul. 27th 2016

Machine Learning Solution

model to mathematically relate the visual data x and the world state w. The model specifies a family of possible relationships between x and w and the particular relationship is determined by the model parameters θ .



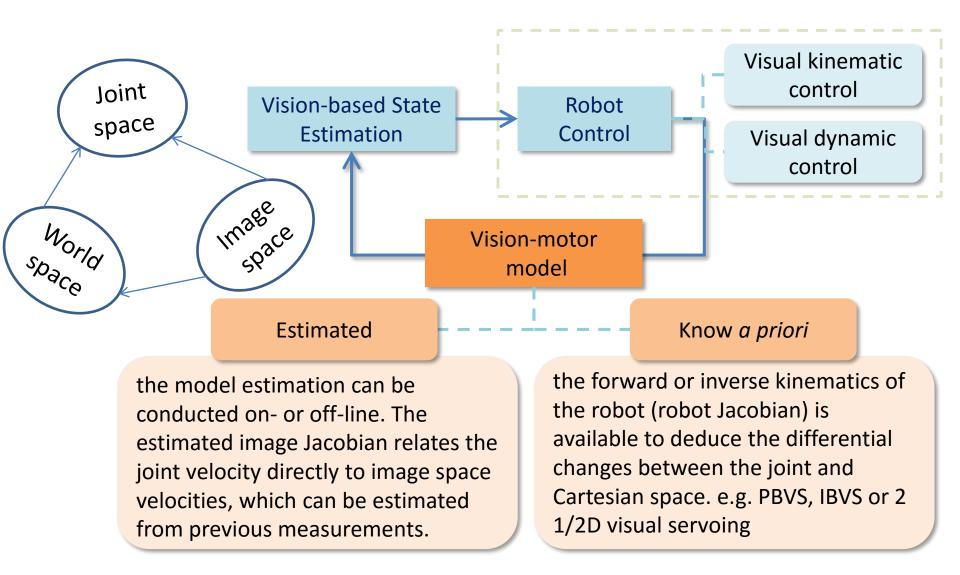
Introduction

Modeling

Solution

Summary

Vision-Motor Model



Introduction

Modeling

Solution

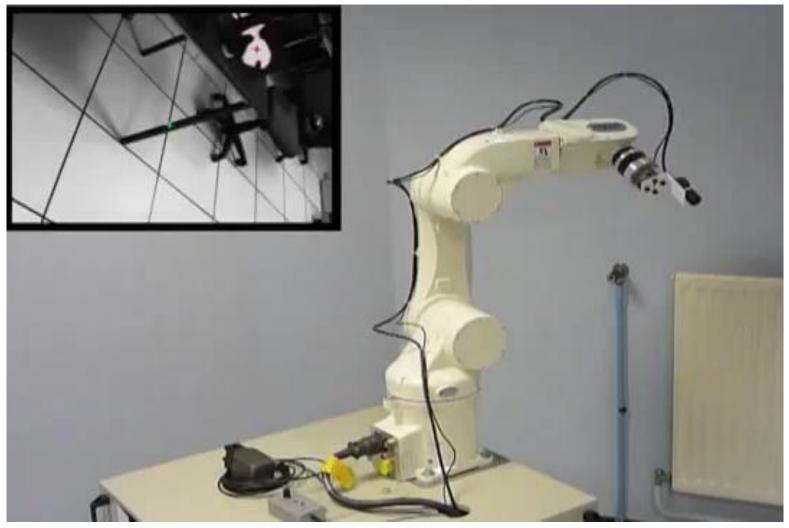
S S

1. Introduction

- 2. Modeling a Robotic Vision Problem
- **3. Solution Proposal**
- 4. Summary

Solution Overview

Example: Object Following



©ViSP

Introduction

Modeling

Solution

Summary

Example: Object Following

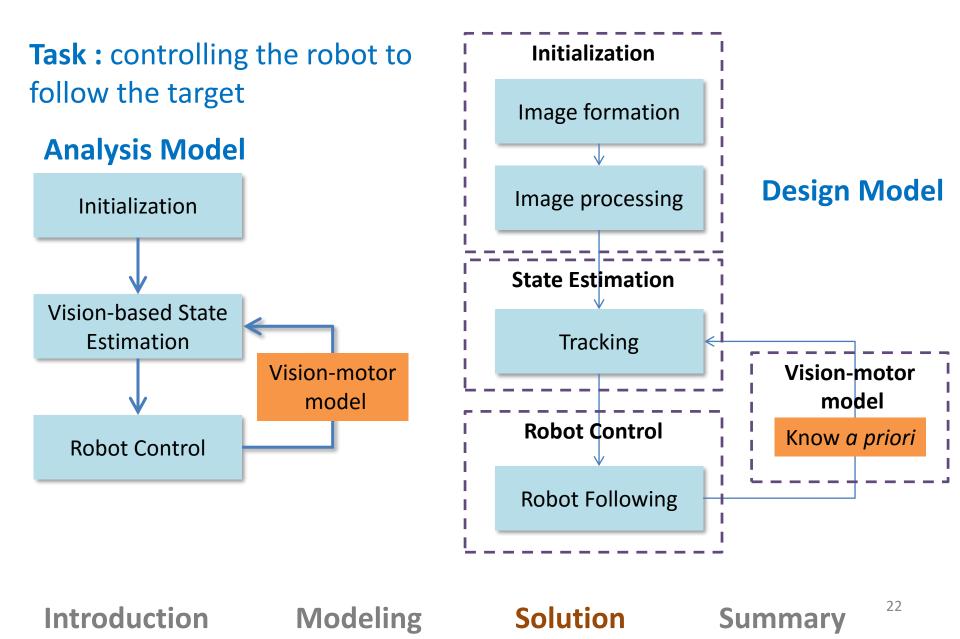
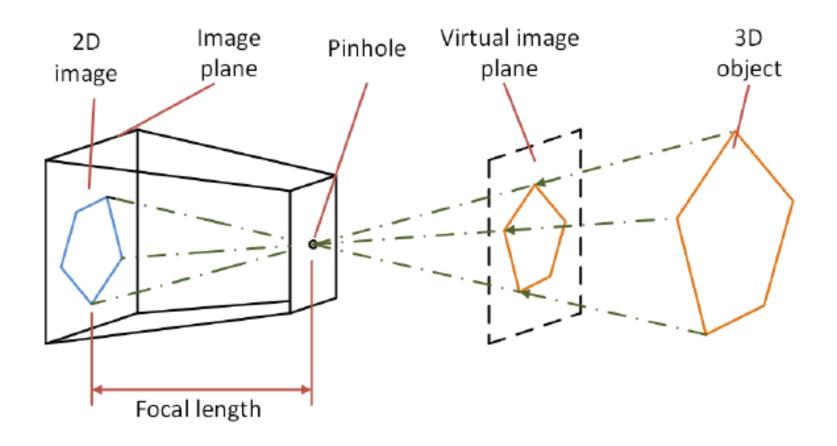


Image Formation

Dr. Ying Wang Jul. 27th 2016

Perspective Projection



Introduction

Modeling

Solution

Summary

Image Formation

Dr. Ying Wang Jul. 27th 2016

Perspective Projection

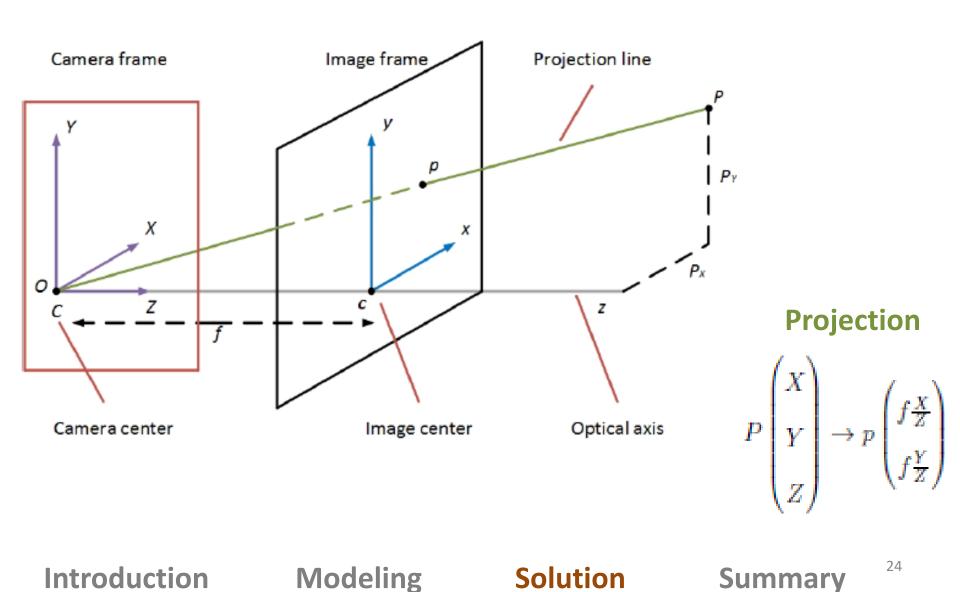
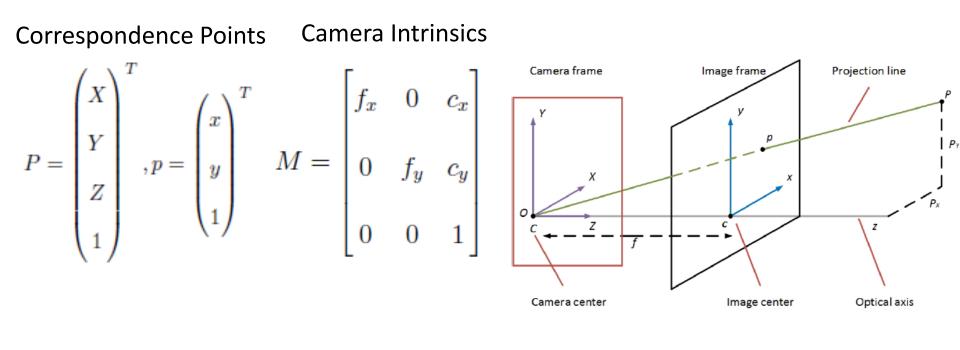


Image Formation

Dr. Ying Wang Jul. 27th 2016

Perspective Projection



Perspective Projection

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{CW} & T \end{bmatrix} \begin{pmatrix} x \\ Y \\ Z \\ 1 \end{pmatrix}$$

Introduction

Modeling

Solution

Summary

T 7

Solution Overview

Example: Object Following

Task : controlling the robot to

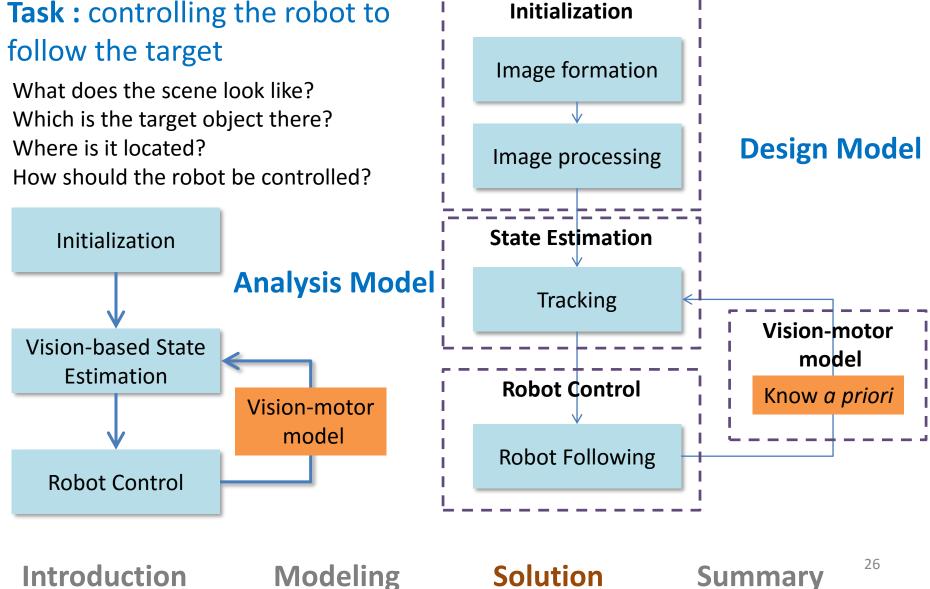
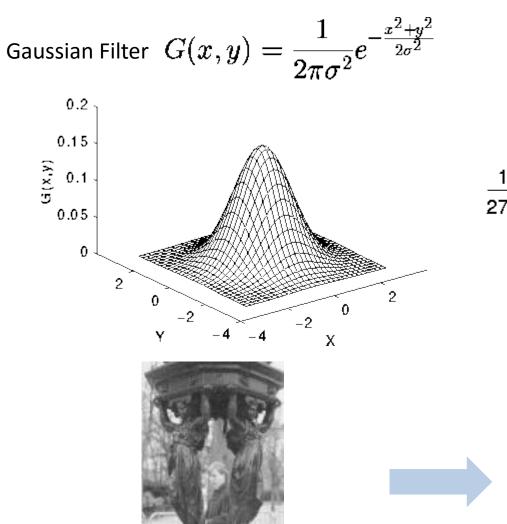


Image Processing

Denoising



173	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Introduction

Modeling

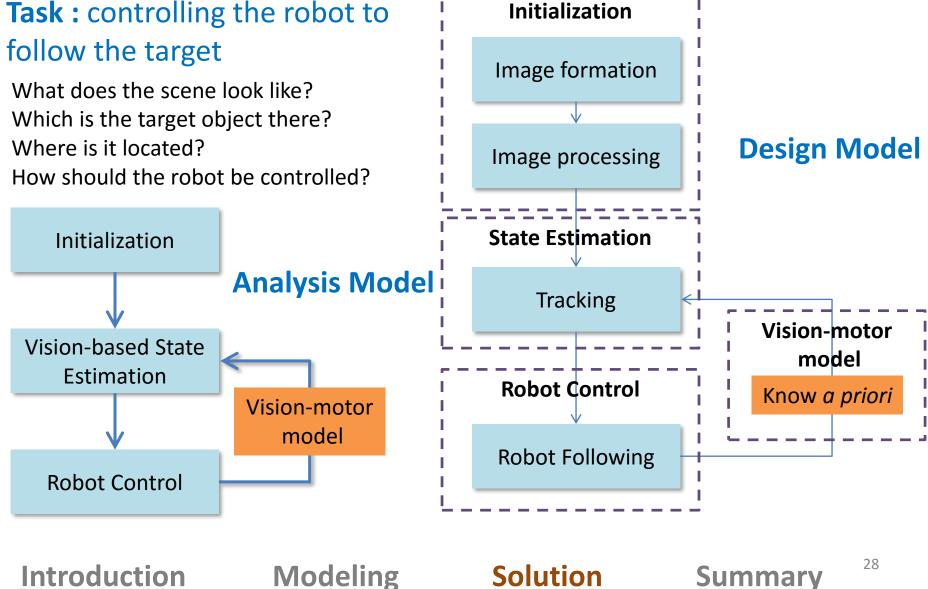
Solution

Summary

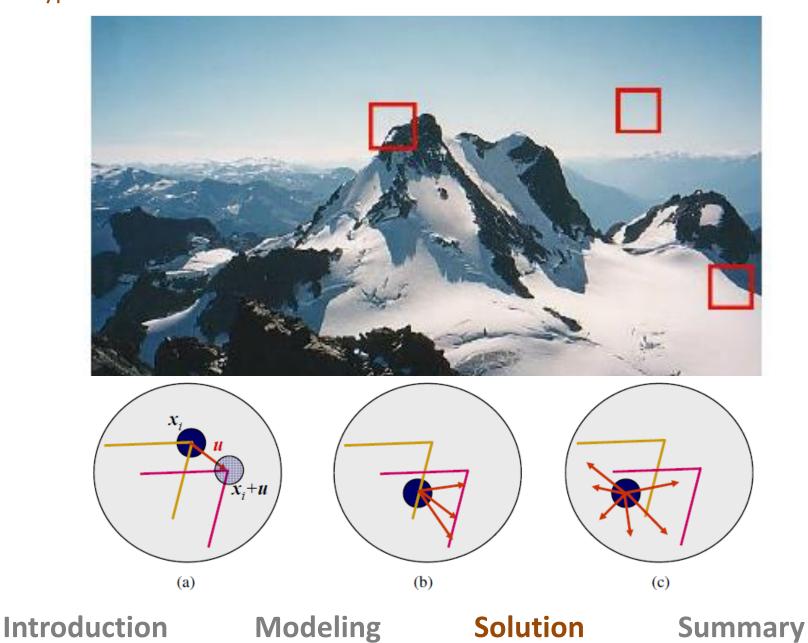
Solution Overview

Example: Object Following

Task : controlling the robot to



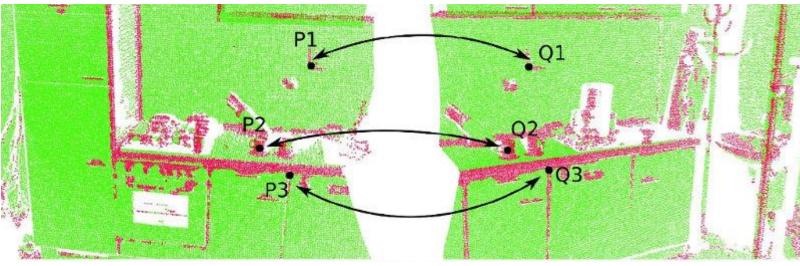
Tracking Keypoints



Tracking Local Descriptor

T = t1

T = t2



©PCL

By including the surrounding neighbors, the underlying sampled surface geometry can be inferred and captured in the feature formulation, which contributes to solving the ambiguity comparison problem. Ideally, the resultant features would be very similar (with respect to some metric) for points residing on the same or similar surfaces, and different for points found on different surfaces, as shown in the figure below.

Introduction

Modeling

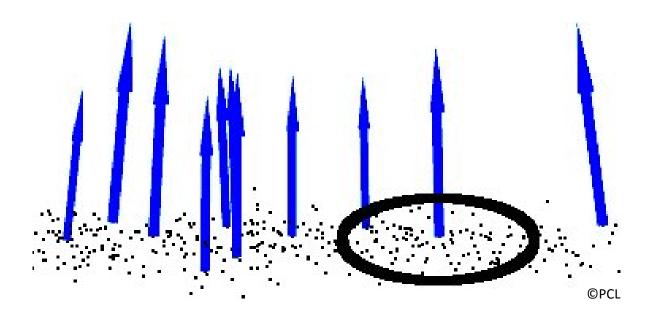
Solution

Summary

Tracking 3D Feature

Dr. Ying Wang Jul. 27th 2016

3D features are representations at a certain 3D point or position in space, which describe geometrical patterns based on the information available around the point. The data space selected around the query point is usually referred as the **k**-**neighborhood**.



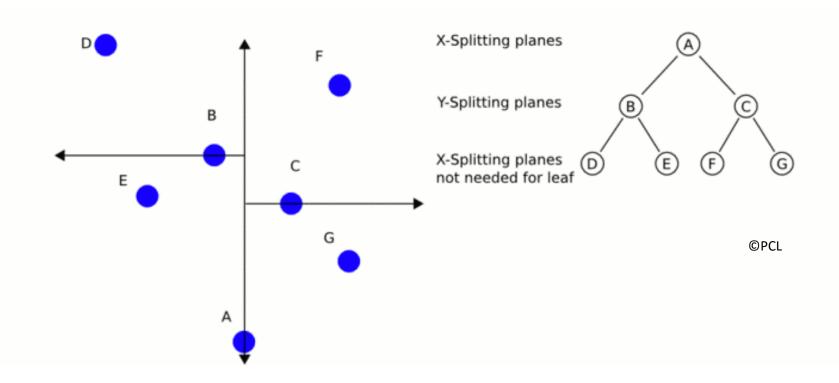
Introduction

Modeling

Solution

Summary

Tracking Local Descriptor - K-neighborhood



Introduction

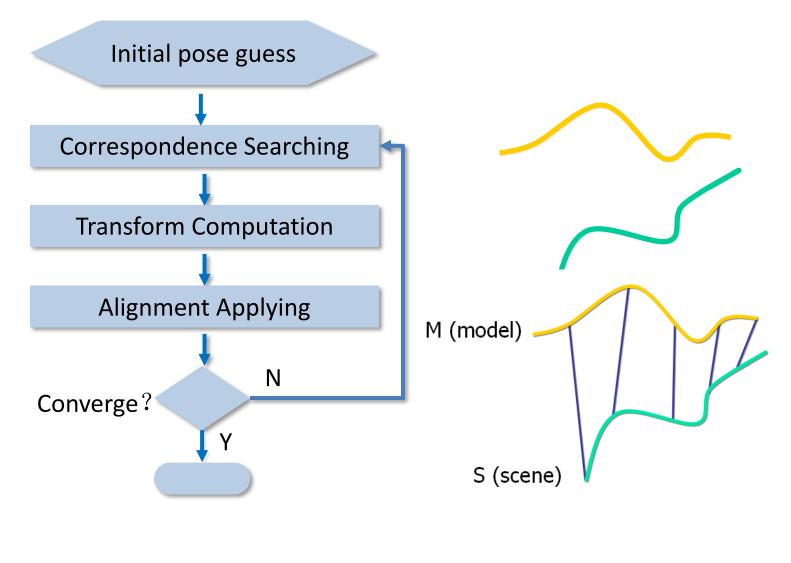
Modeling

Solution

Tracking

Introduction

Matching – Iterative Closest Point



Modeling

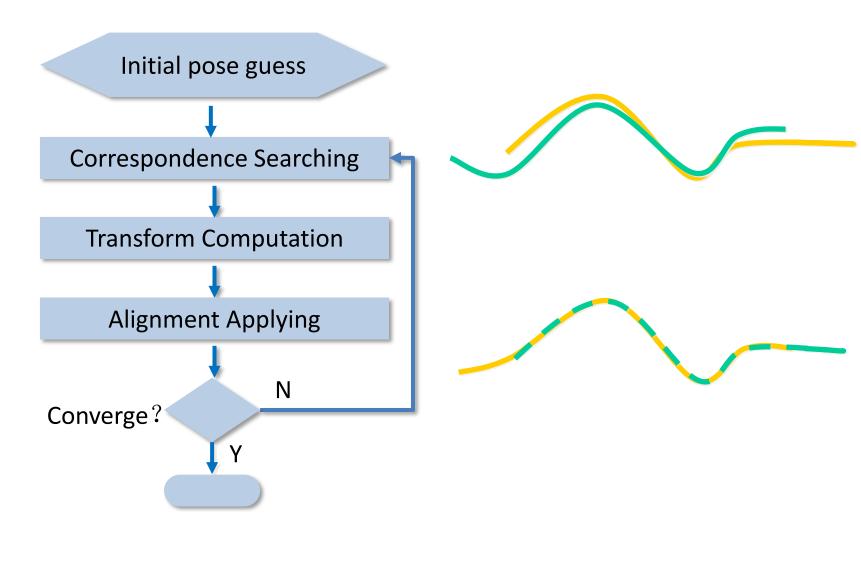
Solution

33

Summary

Tracking

Matching – Iterative Closest Point

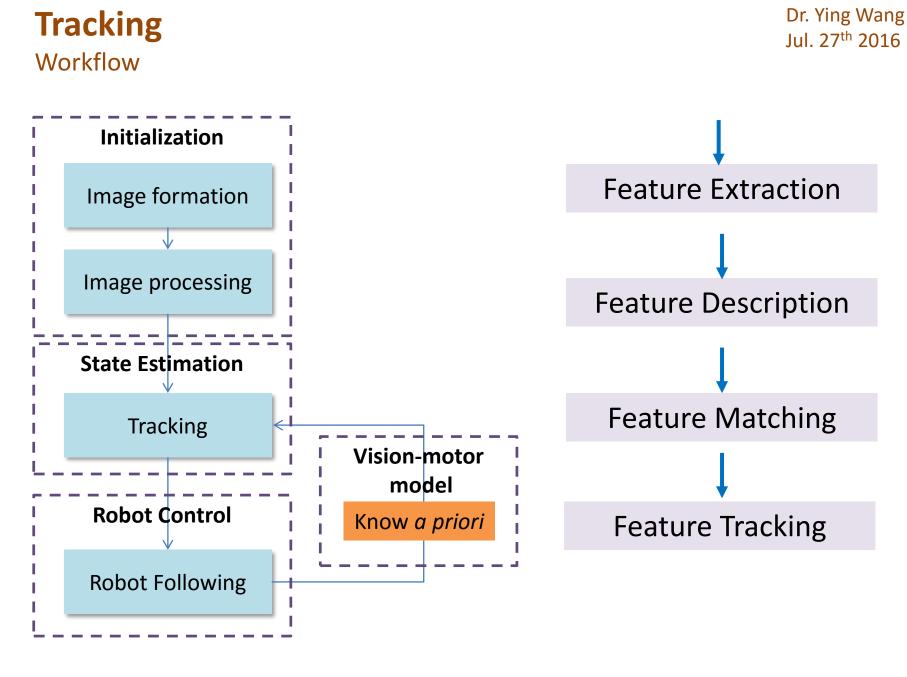


Introduction

Modeling

Solution

Summary



Introduction

Modeling

Solution

Summary

Dr. Ying Wang Jul. 27th 2016

Model

World state w is continuous (3D pose) -> Regression model Taking a generative approach, the likelihoods are described as $P_r(x | \omega = k)$

Learning algorithm

the parameters from training data pairs $\{w_i, x_i\}_{i=1}^{I}$ where the pixels have been manually labeled. The prior parameter is learned from the world states $\{w_i\}_{i=1}^{I}$.

Inference algorithm aims to calculate the 3D pose of the object in the video stream.



Introduction

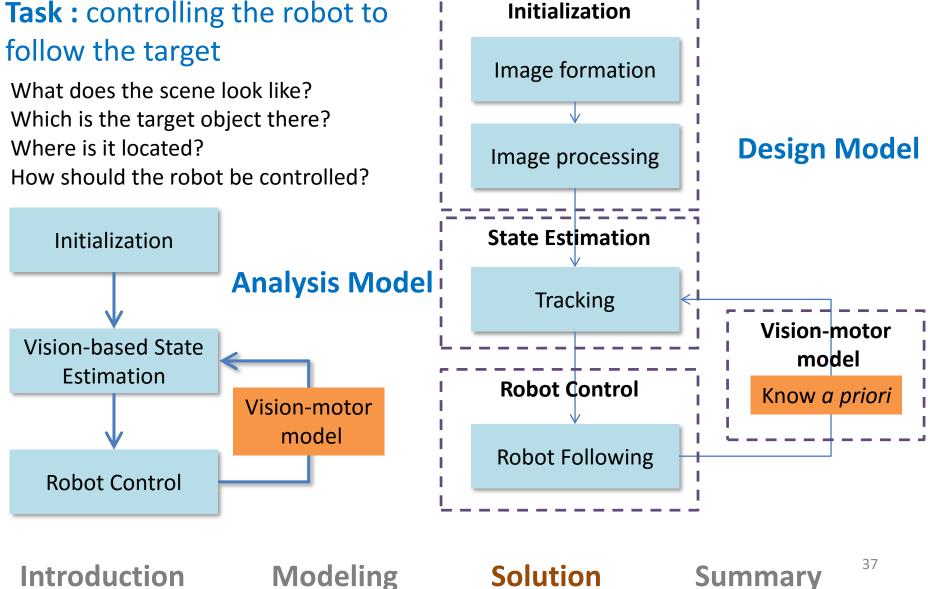
Modeling

Solution

Solution Overview

Example: Object Following

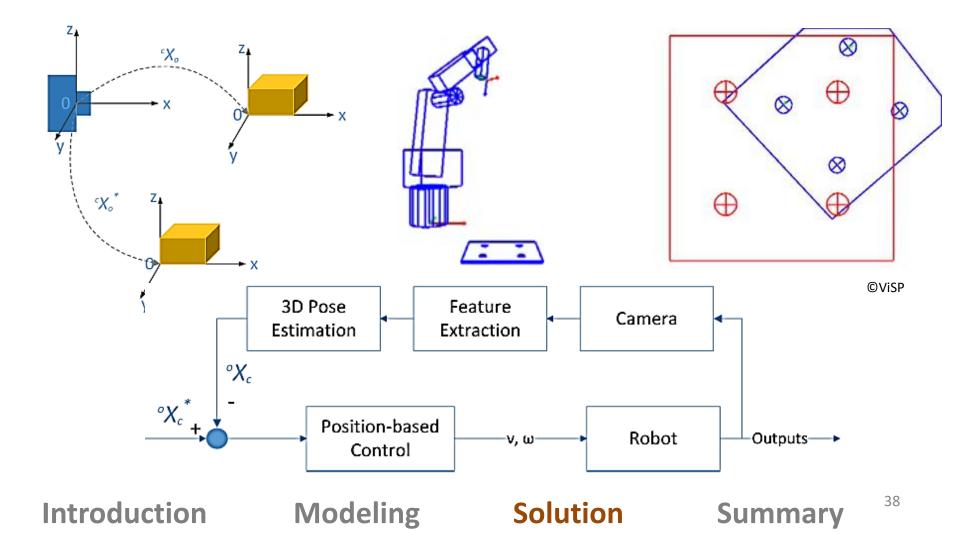
Task : controlling the robot to



Dr. Ying Wang Jul. 27th 2016

Visual Servoing

Vision-motor model: PBVS & IBVS



2 ½ D Visual Servoing

Pseudo codes - Initialization

- 1. set projModel ← perspectiveProjwithDistortion
- set robot ← projModel
- 3. set point[4] //3D points
- 4. set dot[4]
- 5. compute cMo
- 6. set $P \leftarrow (0, 0, 0)$
- 7. set cdMo
- 8. compute $pd \leftarrow cdMo, P$
- 9. compute Zd from P
- 10. compute $p \leftarrow cMo, P$
- 11. compute Z from P
- 12. compute depth, tu
- 13. set task.addFeature \leftarrow (p, pd, depth, tu)

Introduction

Modeling

Solution

Summary

Visual Servoing

Pseudo codes – Control design

- 1. set lamda \leftarrow (2.5, 0.2, 40)
- set task.setServo ← EYEINHAND_L_cVe_eJe
- 3. set task.set_cVe(cVe) \leftarrow robot.set_cVe(cVe)
- set task.set_eJe(eJe) ← robot.set_eJe(eJe)
- 5. set robot.setRobotState ← STATE_VELOCITY_CONTROL

Introduction

Modeling

Solution

Summary

Visual Servoing

Pseudo codes – Control loop

- 1. while true
- 2. for all feature points
- 3. get dot[i].x
- get dot[i].y
- 5. compute & update cMo
- 6. Compute & update p
- Compute & update tu
- 8. Compute & update depth
- 9. update task.set_cVe(cVe) ← robot.set_cVe(cVe)
- 10. update task.set_eJe(eJe) ← robot.set_eJe(eJe)
- 11. compute v
- 12. set robot.setVelocity

Introduction

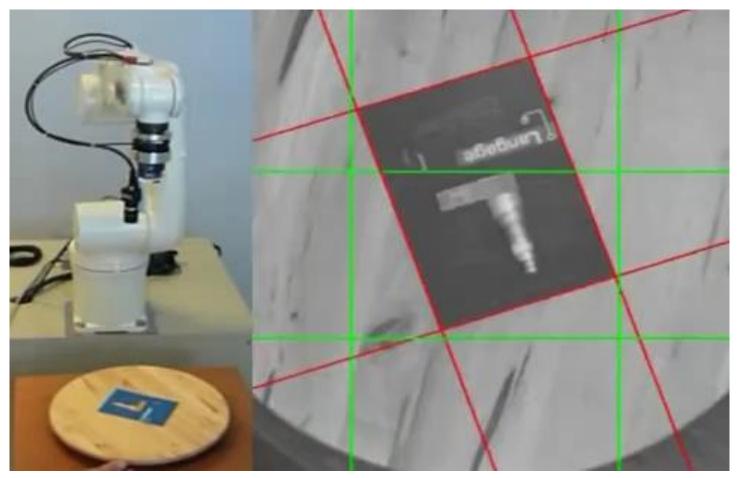
Modeling

Solution

Summary

Dr. Ying Wang Jul. 27th 2016

Object Following



©ViSP

Introduction

Modeling

Solution

Summary

Robotic Vision by ROS

- Drivers
 - 2D/3D range finders
 - RGB-Depth cameras
 - monocular and stereo cameras
- API
 - Tools (pcl, visp, opencv with ros)
 - Support packages (calibration, recognition, image conversion, visualizer)
 - Messages
 - Topics
 - Services
 - parameters
- Tutorials & support
 <u>www.roswiki.com/</u>

Introduction

Modeling

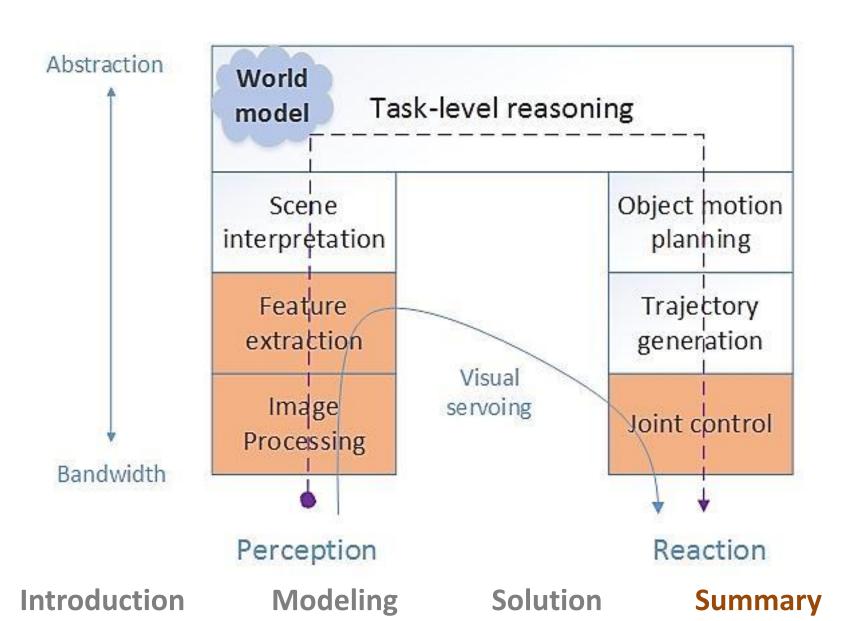
Solution

Summary

1. Introduction

- 2. Modeling a Robotic Vision Problem
- **3. Solution Proposal**
- 4. Summary

Dr. Ying Wang Jul. 27th 2016



谢谢!

Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit!